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The accuracy and efficiency of several numerical methods for solving nonlinear integral 
equations typically found in liquid state theories is studied. In particular, we solve the 
so-called hypernetted chain-mean spherical approximation (HNC/MSA) system of integral 
equations. These equations are solved through the succesive substitution method and 
collocation and Galerkin’s versions of the finite element method. It is found that finite element 
functional analysis, combined with Newton’s method, produces especially accurate and 
efficient algorithms. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

The structure of a simple fluid in equilibrium is defined in terms of probability 
densities for finding two, three, or more particles at specified locations in space. 
Many of the theories for the distribution functions of both homogeneous or 
inhomogeneous fluids are formulated in terms of nonlinear integral or integro- 
differential equations [I]. Although there are a few very important cases for which 
some of these theories can be analytically solved [I], their application to many 
other situations of physical relevance inevitably requires numerical iterative 
methods 121. Among the most extensively used numerical procedures are the 
successive substitution method or Picard iterative method [2-53 and the Fourier 
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transform method [2,6]. In many cases the results obtained with those procedures 
are satisfactory but, too often, the sensitivity to the choice of a trial function leads 
to difficulties in getting the iterative scheme to converge [4,7]. When these 
difficulties are present, if success is awaiting, solving nonlinear equations requires 
numerous iterations and thus large amounts of computational time. This situation 
can even be harder when ionic fluids are involved [8]. 

In the past, an efficient numerical algorithm based on the finite element method 
was applied to the solution of the Percus-Yevick (PY) and hypernetted chain 
(HNC) integral equations, for a fluid of particles interacting through a 612 
Lennard-Jones pair potential [9], and to the mean spherical approximation 
(MSA), for the square-well [lo, 111 and Yukawa fluids [12, 131. Other efficient 
numerical methods, based on the Newton-Raphson iterative technique, have been 
developed [ 14, 151. 

In this article, we compare the efficiency and accuracy of a successive substitution 
method against three different versions of the finite element technique, when solving 
the HNC/MSA coupled nonlinear integral equations for a model electrolyte solu- 
tion next to a charged electrode. In this model, which is known as the primitive 
model, the ions of species i are charged hard spheres of charge zie and diameter ui, 
the solvent is a dielectric continuum of dielectric constant E, and the electrode is 
taken to be a flat, hard wall with a charge density cr. We believe that this com- 
parison can be of help for a more appropriate choice of numerical algorithm when 
solving systems of nonlinear integral equations similar to the HNC/MSA solved 
here. 

In the next section we describe some details of the theory associated with the 
HNC/MSA integral equation. Section 3 is devoted to a discussion of the numerical 
methods used in this work. We use Section 4 to make some comparisons of the 
accuracy and efficiency of the four numerical methods. The accuracy is tested 
through the charge density 0 on the surface of the electrode, a quantity that, as we 
shall see, can be calculated from the solution functions of the integral equations. 
The efficiency is tested through the computing time required by the four procedures. 
In Section 5 we present some conclusions about the accuracy that each of the 
methods can offer and their computing time consumption. 

2. THEORY 

In the primitive model of an electrolyte the interaction potential between two 
ions separated a distance r is 

U,(r) = 

1 

z,z,e’ 
-3 

w 
r > a,. 

(1) 
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Where zi is the valence (including sign) of ion of species i, e is the magnitude of the 
electronic charge, and 

ai+ aj 
a’ =-r I, 

If a charged wall or electrode is immersed into an electrolyte, ions of opposite 
charge accumulate near the wall. The charged electrode and the accumulation of 
charge form a “double layer” of charge. Therefore one refers to this system as the 
electrical double layer system. For simplicity we assume that all the ions are equal 
in diameter. Consequently all the ions have the same distance of closest approach, 
a/2, to the plane, where a is the ionic diameter common to all the species. For a 
discussion on this and other models of the electrical double layer see Ref. [16]. 

The interaction potential between an ion with the electrode is given by 

1 
00, x < a/2 

U,(x) = 
4nez .(T 

-;x+c, x > a/2. 
E 

where x is the ion’s distance to the plate and c is a constant which depends on the 
choice of the point of zero potential. A singlet distribution function, g,(x), of ions 
of species i at a distance x from the wall is defined as 

g,(x) &w, 
P, 

where p,(x) is the species i number density profile and pi=pi(co) is its bulk 
number density. The function g,(x) is a measure of the probability of finding an ion 
of species i at a distance x from the plate. Therefore in our model g,(x) = 0 for 
x -c a/2. 

The mean electrostatic potential at a distance x from the wall is given by [4] 

t)(x)=? i zip,c- (x-t)gi(t)dc, 
/=I x 

(2) 

where n is the number of species in the electrolyte. 
The charge density 0 on the electrode must be equal in magnitude, but opposite 

in sign, to the total amount of charge accumulated near the electrode. Hence 
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The HNC/MSA integral equations for the reduced density profiles, g,(x) = 
hi(x) + 1, are [4] 

1 +h,(x)-exp 
i 

--ez,jWo+2npA(x)+2n i pjjz hi(t) K(x, t)dt 
j=l 42 

+ y+ i zjpj j; h,(t) L(x, t) dt} =o 
j= 1 

(4) 

for i = 1, . . . . n, where p = l/kT (k is Boltzmann’s constant and T is absolute 
temperature); $O is the electrostatic potential on the plate, 

= 0, 
3a 

x>--; 
2 

K(x, t) = : [a2 - Jx - tl’] + 2 [a3 - Ix - t13] 

-2 [aS-jx-t15], x-a<t<x+a 

= 0, otherwise; 

L(x, t) = - 24 tcx-a 

r 

‘a-x-f-l+Ta 
- [a’ - (x - t)2] 

+’ 
r 2 

( > 
- (a3-Ix-t13), 

3 l+Ta x-a<t<x+a 

=- 2x5 x+a<t. 

In Eqs. (5) and (6), 

c =-(l+2r1)2 I 
(1 -rJ4 ’ 

c 
2 

=6’1 (1 +r1/a2 
(1-r114 ’ 

(5) 

(6) 

(7) 

(8) 

(9) 
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and 

r= (1+2tca)“‘- 1 
2a ’ 

(10) 

(11) 

(12) 

(13) 

is the Debye screening length; K- ’ is a measure of the thickness of the electrical 
double layer. The higher the concentration and/or the valence of the ions the 
smaller the thickness of the double layer. 

The HNC/MSA equations have been previously solved for some two species 
symmetric (z, = - z2) [4] and asymmetric salts [S]. In all cases the ionic concen- 
trations p, and p2 were chosen in order to satisfy the charge neutrality condition 

f zjpj=o, (14) 
i= 1 

since this condition, although not neccessary, has been imposed in the derivation of 
Eqs. (4). 

The agreement of the HNC/MSA calculations with Monte Carlo results, which 
are the “experimental” results for the given model, shows the Eqs. (4) satisfactorily 
account for the interfacial properties of the primitive model of an electrolytic 
solution near a flat electrode [4, 51. 

3. NUMERICAL METHODS 

A common feature of numerical algorithms for solving nonlinear integral 
equations is the transformation of the problem into a set of nonlinear algebraic 
equations. In most numerical approximation processes, a trial function is expressed 
in terms of a set of basis functions, and the coefficients of the basis functions in the 
expression are related by executing some scheme for reducing a measure of the 
error of approximation. In some cases the unknowns of the algebraic system agree, 
up to some approximation, with the values of the unknown solutions of the integral 
equation at certain properly selected points of the domain. A wide variety of basis 
functions have been used to obtain solutions of the integral equations of statistical 
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mechanics. For example, Lozada et al. [4, 51 employed quadratic functions when 
they evaluated the integrals of Eqs. (4) by Simpson’s rule while Alvarez et al. [ 171 
constructed an appropriate set of domain-spanning orthogonal polynomials to 
solve the same equations. Different algorithms produce different sets of algebraic 
equations which must be solved by iteration in order to complete the solution of 
the integral equation. In this section we outline the procedures used in this work 
for solving HNC/MSA integral equations for the electrical double layer. These are, 
the successive substitution method, the collocation version of the finite element 
method both with linear and quadratic basis functions and the Galerkin’s versions 
of the finite element method with linear basis functions. 

Successive Substitution Method 

The form of Eqs. (4) is well suited for the use of the successive substitution 
method. The successive substitution method employed in this work was used before 
by Lozada et al. [4,5] to solve the same set of equations. In this method, the set 
of integral equations is transformed into a set of algebraic equations by substitution 
of the integrations in (4) by a quadrature rule. Following Ref. [4] we used 
Simpson’s rule in this work. Since solving an equation on an unbounded domain 
is clearly impractical, it is assumed that the reduced density profiles, g,(x), are 
equal to unity for x greater than a cutoff value, R. The value of R is strongly 
dependent on the concentration of the electrolyte, being necessary to choose it by 
successive increments in its value until the solution is stable. 

In order to solve the system (4) for given values of fl, +O and concentration, some 
initial set of guess functions, hinQi(x), is inserted into the right-hand side of Eqs. (4) 
to obtain a first-improved guess h OUt;i(x). In principle these functions could be 
reinserted into the right-hand side of the equations and a second improved set of 
function obtained. Iteration in this manner could produce a series of approxima- 
tions convergent to the correct solution. However, generally this results in an 
extremely lengthy and frequently unstable procedure. Fortunately, the iteration 
convergence can be improved by mixing successive values of h;(x), according to the 
formula 

hii; “(x) = Ahbs,),,,(x) + (1 - 1) h;,$(x), (15) 

where 1 is a parameter that must be decreased with increasing concentration. The 
iterative process is continued until some measure of the difference between succesive 
iterations become less than a prescribed small number d. In this work we used the 
Euclidean norm as that measure; that is, 

(16) 

where n is the number of species in the electrolyte and N is the number of points 
used in the numerical integration. 
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Finite Element Methods 

The goal of the finite element method is to reduce a set of equations Z[h(x)] = 0 
to a system of algebraic equations by subdividing the domain of the problem into 
a number of subdomains, or elements, of appropriate size and shape. The solution 
functions, h;(x), in Eqs. (4) are approximated by a set of N linearly independent 
basis functions (4, (x)}, 

h;(x)= 2 h&(x). 
k=l 

In the last equation, the superscript a emphasizes the approximate character of the 
function hi(x). The functions dj(x) have simple mathematical forms and are defined 
piecewise over the finite element mesh. The unknown coefficients, {h,}, are 
approximations for the values of the solution function hi(x) evaluated at the nodes 
of the elements. 

When the expansion (17) is substituted into Eqs. (4), the discrepancies between 
the actual and approximate solutions, i.e., the residual functions, Z[h”], are 
obtained: 

S$[h”(x)] = 1 + f hrkdk(x) - exp -eZ;/?$o + hpA(X) 
k 

i k i k 
(18) 

for i= i, . . . . n. Where the functions &(x) and Lk(x) are defined as 

Kk(x) = j-’ K(x, t) dk(t) & 
u/2 

and 

Lk(x) = j” L(x, t) $dk(t) dt. 
42 

VW 

(19b) 

The weighted-residuals method provides criteria for minimizing the residual 
functions, S[h”(x)]. In the collocation [18] version of this method the residuals 
are reduced to zero at the nodes of the elements, 

I 
R 

9[h”(x)] 6(x-x,) dx = 0 (20) 
u/2 

for 1 = 1, . . . . N, where 6(x-x,) is the Dirac delta function and x, is the value of x 
at the Zth node. This is a discrete form of the variational problem in which Eqs. (4) 
are asked to hold in the most classical sense. On the other hand, in its most obvious 
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form, Galerkin’s method [ 181 requires the residual functions to be orthogonal with 
all the approximating functions 4,(x), 

s ’ .Y[h”(x)] d,(x) dx = 0, (21) 
42 

for I= 1, . . . . N. Galerkin’s method is a weak or non-classical formulation of the 
variational problem. 

Substituting Eqs. (18) into the collocation criteria, Eqs. (20) we obtain the 
system of algebraic equations, 

F,= 1 +hi,-E,(x,)=O (22) 

for i = 1, . . . . n and I = 1, . . . . N. The function E,(x; h) is defined by 

E,(x) = exp -ezi/ltio + 2npA(x) + 27C i fj pjhjkKk(X) 

.i k 

+ 
27$e2z. ’ N 
E 1 C ZjPjhjkLk(X) 

i k 
(23) 

On the other hand, substitution of Eqs. (18) into the Galerkin’s criteria, Eq. (21), 
yields the set of algebraic equations, 

c hikak, -.L,({hl)+b,=O (24) 
k 

for i = 1, . . . . n and 1= 1, . . . . N, where 

(25) 

(26) 

and 

The matrix elements ak, and the vector elements b,, which involve only integrals of 
the basis functions, can be computed once and for all. Numerical calculation off,, 
could require numerous evaluations of the function E,(x). The next numerical 
approximation we make is to expand the function Ei(x) in the basis functions 
idi(x that is, 

(28) 
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This is called the Swartz-Wendroff approximation [19]. When this approximation 
is used, the integrals in (26) can be expessed as 

fii=t eikak,. (29) 

The coefficients eik are the values of the function E,(x) at the nodes; that is, 
ejk = Ei(Xk). 

Expressions (28) allows us finally to write the Galerkin equations, Eqs. (24), in 
the simple form, 

F,,=: (hik--eik)ak,+bl=O 
k 

(30) 

for i = 1, . . . . n and 1= 1, . . . . N. In contrast with Eqs. (24), this new set of algebraic 
equations only requires evaluation of the functions Ej(x) at the nodes of the 
elements. 

The key feature of the finite-element approach is that each basis function is non- 
zero only over a small subdomain of the entire domain a/2 <x < R. In this work 
we used two different sets of basis functions: linear and quadratic Lagrange shape 
functions. First we define a local variable t taken values in the interval, - 1 d 5 6 1, 
over each finite element, 

4= 
2x-x,-x, 

x,-x, ’ 
(31) 

where X, and x, are the positions of the left and right endpoints of the element, 
respectively. Two local linear functions are then defined over each element 

(31a) 

and 

W)=fU -0. @lb) 

Similarly, three local quadratic functions are defined over each element 

and 

G(5) = St + 1). (32~) 

Quadratic functions require an auxiliary node at the middle point of the element. 
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Once a set of basis functions is selected, equations for the collocation or Galerkin 
criteria can be solved by Newton’s method. This algorithm provides a set of linear 
equations for the expansion coefficients at the (k + 1)-th iteration in terms of the 
coefficients at the kth iteration. In compact notation 

J(hck’). (hck+ 1) - h’@) = - F@(k)), (33) 

where J is the Jacobian matrix of the system. 
Gaussian elimination was used to solve Eq. (33). The iterative process is 

continued until the Euclidean norm of the difference between succesive iterations 
become less than a prescribed small number A: 

(34) 

This is equivalent to the criteria used to stop the successive substitution process, 
Eq. (16). 

The converged Jacobian from Newton’s method was used to provide initial 
estimates of solutions for other conditions by a first-order parametric continuation 
technique, similar to Euler’s method. If, for example, the potential $,, on the 
electrode is chosen as the changing parameter, an initial estimate h’ for a larger 
potential t+& can be generated from the converged Jacobian of a previous solution h 
at a lower value tjO by 

,Uh;ICIo).(h’-h)= - (35) 

4. RESULTS 

Having established the equations for the collocation and Galerkin methods, in 
this section we proceed to do some comparisons between the results obtained with 
these methods and the successive substitution method. We solved Eqs. (22) for the 
collocation criteria using both linear and quadratic basis functions, Eqs. (31) and 
(32); respectively. We also solved Eqs. (29) for the Galerkin criteria with the 
Swartz-Wendroff approximation using linear basis functions. In order to solve 
those equations, the domain a/2 d x < R was divided into suitable finite elements. 
The positions of the nodes, {xi}, were chosen to concentrate elements in those por- 
tions of the domain where the solution varies most rapidly. Because reduced density 
profiles are very steep near the hard wall, this option is particularly important for 
the integral equation under study. In this work, the domain was divided into 
several subdomains, and a uniform grid was constructed over each one of them. To 
illustrate the general form of the solution, in Fig. 1 we show the reduced density 
profiles for a typical example. It is seen in this figure that the counterion reduced 
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0.5 40 2.0 3.0 4.0 SO 

x/a 

FIG. I. Reduced density profiles for a 1 M model monovalent electrolyte (a =4.25 A, 7’= 298 K, 
E = 78.5). The potential on the electrode is i0 = 50 mV. The broken and solid curves correspond to 
Gouy-Chapman and HNC/MSA results, respectively. 

density, g-(x), is, of course, higher next to the positively charged electrode and 
decreases as x increases, since the electric field produced by the electrode is 
gradually being screened by the counterions charge. Whereas the co-ion reduced 
density has the opposite behavior. The distance from the plate to the point where 
the co-ion and counterion become equal to their bulk value (g,(x) = 1) is called the 
thickness of the electrical double layer. The higher the ionic concentration and/or 
valence and/or the potential of the plate, the smaller the thickness of the electrical 
double layer. For comparison, in the same figure the results obtained with the 
classical theory of Gouy [20] and Chapman [21] are also shown. In the version 
Gouy and Chapman used here, the ions are assumed to be point charges. However, 
they are assumed to have a size in their interaction with the plate. Therefore this 
theory mainly takes into account the effect of the electrical forces present in the 
system. Whereas the HNC/MSA result in addition takes into account in an 
approximate manner the ionic size. It is seen in Fig. 1, that there are quantitative 
and qualitative differences between the two theories. For example, notice that the 
thickness of the electrical double layer is narrower in the HNC/MSA result. 

In order to study how the accuracy of the solution improves when the number 
of elements on the domain is increased, we choose first to solve the case of a 
symmetrical 1: 1 electrolyte with a concentration of 1 M, and electrode potential of 
$0 = 10 mV. All calculations were done with a = 4.25 A, E = 78.5, and T= 298 K. 
For this concentration, an appropriate value of the cutoff is R = 20 (distances are 
reduced with the distance of closest approach, a/2). Eight different grids were used 
in this case. In Table I the number of elements (two node elements) over each one 
of four subdomains is tabulated. Hereafter we refer to these grids as Gl to G8. 
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TABLE I 

Finite Element Grids 

Interval -5 
ai2 

Gl G2 G3 G4 G5 G6 G7 G8 

l-3 10 20 20 30 40 40 80 160 
3-6 9 9 18 18 18 30 60 120 
612 9 9 18 18 18 24 24 24 

12-20 4 4 4 4 4 4 4 4 

Total 32 42 60 70 80 98 168 308 

Note. The domain 1 <x<20, was divided into four subdomains and a uniform mesh formed over 
each one. First column on the left shows the limits of each subdomain and other columns show the 
number of two nodes elements on the subdomain. Distances are expressed in units of a/2. 

Starting from the Gouy-Chapman approximation, which can be solved analyti- 
cally, as trial functions, we obtained solutions of the HNC/MSA approximation 
with the four options described at the beginning of this section. The iterative 
processes are deemed to have converged for A = lo-” (see Eq. (16) for Picard 
iteration and Eq. (34) for Newton’s iteration). 

To measure the accuracy of the four numerical methods one could calculate from 
the solution of the HNC/MSA equations the electrostatic potential on the plate, 
which from Eq. (2) is equal to 

This quantity should give us the input value of tjO. Unfortunately, while the 
collocation and Galerkin methods with linear basis functions recover the value of 
~5~ poorly and are very sensitive to the grid, the quadratic basis versions of the 
collocation and the Picard methods recover the value of lclo outstandingly and 
almost independently of the grid chosen. 

To facilitate comparisons, we performed calculations of the charge density on the 
plane, 0, according to Eq. (3). This quantity is much more sensitive to the grid 
chosen. In Table II we present the results obtained with each of four options for 
grids Gl to G8. As was expected, the four options compared tend to a certain limit 
value of the charge density, cro, as the number of elements is increased. While the 
two options that employ linear basis functions (options 2 and 4) result in very 
similar values of cr, when the same grid is used, options that employ quadratic basis 
functions (options 1 and 3), do not in general agree in the value of (r when they 
have the same grid. However, they seem to tend to the limit of cro quicker than the 
linear basis function methods. Therefore, options 1 and 3 are probably more 
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accurate than the other two. Hence we have arbitrarily determined the value of (r,, 
as the mean value of 0 for options 1 and 3 with G8. Thus oD = 1.62276624 + 
1.2 x lo-‘. 

In Fig. 2 we plot a measure of the relative deviation from (r,,, for each of the four 
options, against the number of elements. Since the grids used are uneven, the scale 
in the abscissa is somewhat artificial. Nevertheless, the figure shows how the 
relative deviation decreases as N increases. Options 1 and 3 are clearly better than 
options 2 and 4. Option 3 seems to tend to the CJ~ limit in a more consistent way 
than option 1. Options 2 and 4 would require an impractical number of elements 
to attain values of the order of lo-’ or less. 

The efficiency of the methods is measured in terms of the computing time needed 
to obtain solutions of the HNC/MSA integral equations. Our values of computing 
time for each of the four options for grids Gl to G8 are given in Table III. For 
comparison, we arbitrarily assigned a value of unity to the computing time of 
option 3 with G6. In a CDC-930 this corresponds to a CPU time of 3.27 min. It is 
apparent from this table that Picard iteration, option 1, is extremely expensive 
compared with the other options for the grid used in this work. However, it is also 
apparent that the rate at which computing time increases is lower for Picard 
iteration than for any of the options considered. As was expected, Galerkin’s 

- 
b” 

I b0 46 
b 

- $8 
b” 

I 
b 

option 1 

option 3 

100 300 

ELEMENTS 

FIG. 2. Relative deviation of the charge density, o, against the total number of elements. Since the 
values of u obtained with a given number of elements are dependent on the positions of the nodes, ix,}, 
the scale for the abscissa is somewhat artificial. These results correspond to a symmetrical 1: 1 electrolyte 
with a concentration of 1 M and Jl,, = 10 mV (a = 4.25 A, T= 298 K, E = 78.5). 
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TABLE III 

Computing Time Consumption for Each of the Four Options 

Grids 

Option Gl G2 G3 G4 G5 G6 G7 G8 

1 2.10 3.52 4.33 8.41 8.96 11.13 31.2 100.90 
2 0.05 0.10 0.25 0.49 0.70 0.99 4.65 27.20 
3 0.07 0.15 0.26 0.49 0.57 ml 4.64 27.20 
4 0.08 0.15 0.45 0.54 0.96 1.69 10.00 44.20 

Note. A unit time was arbitrarily assigned to option 4 with grid G6. 

\ 
\ 

= \ 
2 \ 
-rl -10 - \ 
=' \ 
2 \ 
-a \ 
= \ 

\ 
5 \ 

\ 
\ 

-20 - 
\ 
\ 
\ 
\ 
\ 
\ 

-30 y 
0 1 2 3 4 5 6 7 6 

ITERATION 

FIG. 3. Typical convergence of the solutions of HNC/MSA equations for a 1 M model monovalent 
electrolyte (a = 4.25 A, 7’= 298 K, E = 78.5). The logarithm of the Euclidean norm as a function of the 
number of iterations, when $a = 50 mV, is shown. The upper curve corresponds to Newton’s iterative 
process when the initial guess function is the solution of the HNC/MSA equation for the rJO = 10 mV 
case. The lower curve (broken) corresponds to Newton’s iterative process in which the initial guess 
function is obtained through the parametric continuation method described in the text. 
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method, option 4, is considerable more expensive than collocation methods, options 
2 and 3. Each one of these options practically require the same computing time. 

In order to illustrate the efficiency of the parametric continuation scheme, in 
Fig. 3 we plot, with a continuous line, the value of the Euclidean norm before each 
iteration. The extrapolation scheme of Eq. (35) is used. The broken curve shows the 
same quantity when a previous solution is used as the initial estimate. From this 
figure it is clear that the number of iterations, and therefore the computational 
time, is reduced if parametric continuation is used. 

5. SUMMARY 

Determination of the reduced density profiles of planar electrical double layer for 
the primitive model of an electrolyte, according to the HNC/MSA theory, require 
the numerical solution of a system of nonlinear integral equations (one for each of 
the n species present in the fluid). The successive-substitution method, traditionally 
employed in the solution of similar problems, is very expensive in terms of com- 
putational work. The finite element methods treated in this work are shown to be 
much more efficient. For example, if for a property like 6, an accuracy of less than 
two parts in lo-’ is required, option 1 with the mesh G6 results in a cost of more 
than 11 times the CPU time required by option 3 with the same mesh. Perhaps even 
more important is the fact that the number of iterations greatly increases for the 
successive substitution method when either concentration or the potential of the 
electrode is increased (4). In contrast, when coupled with Newton’s method and the 
parametric continuation technique, the finite element procedures used here require 
only two to four iterations for steps in rj,, as large as 25 mV, with the convergence 
criterion A = lo-“. 

The finite element approach used here is a modern numerical functional 
analysis [22]. For only a little additional effort, the technique can provide 
information on solution stability, sensitivity, and bifurcation analysis, which is 
unobtainable by traditional numerical methods. 

From the results presented here, it is clear that the collocation criteria (option 3) 
combined with quadratic basis functions, has the virtue of being as accurate as the 
successive substitution method (option l), and at the same time, is one of the two 
fastest options of this work. These characteristics make this option very atractive 
for applications similar to the problem solved here. In fact, it has been used for the 
determination of the temperature dependence of the double layer differential 
capacitance in the HNC/MSA approximation [23]. That study required extensive 
calculations that would be impracticable with traditional Picard iteration schemes. 

The linear basis and the quadratic basis options in the collocation method use 
the same amount of computational time. However, the accuracy of the second one 
is much better than the first. Hence, it would be interesting to study the dependence 
of the efficiency and the accuracy of the collocation method with the degree of the 
polynomials used as basis functions. On the other hand, it is apparent from Table II 
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that for this problem, Galerkin’s criteria does not represent an improvement in 
accuracy over the collocation criteria when linear basis functions are used. This is 
probably due to the use of the Swartz-Wendroff approximation. A study to clarify 
this question remains to be done. 
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